THE DIFFUSE GALACTIC AND EXTRAGALACTIC RADIO EMISSION

NICOLAO FORNENGO

Department of Physics, University of Torino and Istituto Nazionale di Fisica Nucleare (INFN) – Torino Italy

fornengo@to.infn.it nicolao.fornengo@unito.it

www.to.infn.it/~fornengo www.astroparticle.to.infn.it

Radio Synchrotron Background Workshop University of Richmond, 20 July 2017 The isotropic radio background revisited NF, Lineros, Regis, Taoso JCAP 04 (2014) 008

Assessment of the size of the ARCADE excess Reanalysis to include detailed galactic foreground modeling and treatment of point-like and extended sources

Galactic synchrotron emission from WIMPs at radio frequencies NF, Lineros, Regis, Taoso JCAP 01 (2012) 005

Bounds on particle DM from diffuse galactic radio emission

Total brightness of extra galactic sky

Collect all radio emission arriving from the sky Requires subtraction of galactic foregound

Add up single contributions from all EG sources Individually resolved sources Statistical determination from fluctuations below detection threhold

The two do not match

Faint emitters are required New population(s) of astrophysicsl sources Dark matter

Radio Surveys

Requirements Good coverage of high latitudes necessary to determine the EG emission Large fraction of the sky observed useful to anchor galactic foreground models

Frequency	Angular	rms Noise	Calibration	Zero-level	Fraction	Survey
[MHz]	resolution	[K]	error	[K]	of Sky	reference
22	$1.1^{\circ} \times 1.7^{\circ}/\cos Z$	3000	5%	5000	73%	Roger et al.
45	5°	2300/300	10%	544	96%	Guzman et al.
408	0.85°	1.2	10%	3	100%	Haslam et al.
820	1.2°	0.5	6%	0.6	51%	Berkhuijsen
1420	0.6°	0.017	5%	0.2 (0.5)	100%	Reich et al.
2326	0.33°	0.03	5%	0.08	67%	Jonas et al.

22 MHz

45 MHz

408 MHz

7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9 9.2 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9 9.2 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9 9.2 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9 9.2

820 MHz

1420 MHz

Galactic diffuse emission

Free-free

Finkbeiner et al, Ap 15 146 (2003) 407 Traced through H α line template with free norm Not that crucial, since we mask the galactic plane

Synchrotron

Primary electrons Secondary electrons and positrons Most relevant energy range (1 - 30) GeV

Synchrotron source term

Primary electrons Radial profile from SNR distribution ^[a,b] Vertical profile: $\exp(-z/z_s)$ with $z_s = 0.2$ Kpc

Secondary electrons and positrons Interactions of primary p and He on ISM

Sources injection spectra: broken power laws Spectral indeces $\beta_{inj,nuc}$ and $\beta_{inj,e}$ Breaks at 9 GeV/4 GeV for nuclei/electrons

[a] Strong et al, ApJ 772 (2010) L58 [b] Lorímer et al, MNRAS 372 (2006) 777

Propagation setup

GALPROP v. 54.1.984

Cylindrical box: Radial size: 20 Kpc Vertical half-height: L = 1÷40 Kpc

Pure diffusion (no reacceleration) Reacceleration: increases secondary e[±] at low energies as compared to pure diffusion: some tension with low frequency radio data

Energy losses

Magnetic fields

ApJ 761 (2012) LII ApJ 757 (2012) 14 Large-scale regular field disk component toroidal halo out-of-plane component Small-scale random field Striated random field

Constrained on extragalactic Faraday rotation measures and on 22-GHz WMAP7 polarized and total intensity

Magnetic fields

To allow flexibility in the mid-high latitude emission (relevant for the determination of the extragalactic background), we let the random component to be more general:

$$B(R, z) = B_0 \exp[-(R - R_T)/R_B] \exp(-|z|/z_B)$$

$$R_T = 8.5 \text{ kpc}$$

 $R_B = 30 \text{ Kpc}$
 B_0 : determined by the fit

Model a: $z_B = L$ Model b: $z_B = 2 \text{ kpc} < L$ (only for L = 4, 8, 16 kpc)

The z-scaling represents the main source of uncertainty related to the magnetic field modeling

Benchmark propagation models

code name		D_0	$\beta_{\rm inj,nuc}$	$eta_{\mathrm{inj},e}$	B_0	color coding
	[kpc]	$[10^{28}\mathrm{cm}^2\mathrm{s}^{-1}]$			$[\mu G]$	
L1	1	0.75	1.80/2.3	1.20/2.3	12	red
L2	2	1.7	1.80/2.3	1.20/2.35	8.0	blue
L4	4	3.4	1.80/2.3	1.20/2.35	6.0/7.0	green
L8	8	5.8	1.80/2.3	1.20/2.35	4.6/4.7	orange
L16	16	8.0	1.80/2.3	0.5/2.35	4.0/4.7	cyan
L25	25	8.1	1.80/2.3	0.5/2.35	3.9	maroon
L40	40	8.3	1.80/2.3	0.5/2.35	3.8	brown
		[1]	[2]	[3]	[4]	

- [1] $D(\rho) = D_0 (\rho/4 \text{ GV})^{0.5}$ [2] Index below/above break at 9 GeV
- [3] Index below/above break at 4 GeV
- [4] Modela or Modela/Modelb

Tuned on CR data

Comparison with CR data

Boron/Carbon

Comparison with CR data

Comparison with CR data

Fitting procedure of radio maps

CMB monopole is subtracted: $T = (2.72548 \pm 0.00057)$ K

Radio maps averaged over 15 deg scale (N_{side} = 4) The GMF components have 2 different scales Regular: O(kpc) Random: O(100 pc) Stocasticity due to the random component introduces variance on the scale of its coherence length

> Better to compare emission averaged on this scale Best angular scale not obvious, due to LOS effect 15 deg as a conservative assumption

Fitting procedure of radio maps

$$\chi^2 = \sum_{i=\text{pixels}} \frac{(T_i^{\text{data}} - T_i^{\text{model}})^2}{\sigma_i^2}$$

$$T_i^{\text{model}} = T_E + c_{\text{gal}} T_i^{\text{gal,synch}} + c_{\text{brem}} T_i^{\text{gal,brem}}$$

$$\sigma_i^2 = (\sigma_i^B)^2 + (\sigma_i^{\exp})^2$$

 σ_i^{B} : Variance induced by turbulence (data variance in pixel i) σ_i^{exp} : Experimental uncertainty

Galactic disk mask: |b| < 10 deg Intercepts galactic points sources and low lat sources

Extended local sources (líke radio loops) Hígh-lat sources

> Masks Modeling

Masks - Take 1

Iterative method:

1. Fit of the map (out of the |b|<10 deg mask) with model

 $T_i^{\text{model}} = T_E + c_{\text{gal}} T_i^{\text{gal,synch}} + c_{\text{brem}} T_i^{\text{gal,brem}}$

- 2. Compute resíduals $R_i T_i^{\text{data}} T_i^{\text{BFmodel}}$
- 3. Compute mean $T_{R,i}$ and $\sigma_{R,i}$ in 50 deg regions around the pixel i 4. Mask defined as $R_i > T_{R,i} + 5\sigma_{R,i}$
- 5. Repeat, with masked pixel excluded

Iteration stops when masks stabilises

The model fit is then performed on $N_{side} = 4$ downgraded maps

Masks - Take 2 and 3

In order to cross-check and/or improve the impact of masks, we perform two additional trials:

WMAP mask at 22 GHz

SExtractor to determine masks at different frequencies Analyze original maps on 50 deg scale: mean, std deviation, detection threshold at 5**0** Similar to the iterative method: difference stays in flat local backgroud, while with iterative method galactic foregroud variations are taken into account Slightely larger masks

Wmap mask

SExtractor masks

Polarization template to intercept the most intense synchro sources

Template: DRAO + Villa Elísa T > 5σ $\sigma = 45 \text{ mK}$

(noíse: 15mK zero level accuracy: 30mK(

Results

Isotropic emission systematically in excess of what inferred from number counts

Results appear stable against: Galactic halo modeling Galactic magnetic fields Spatial distribution of cosmic rays sources Different resolution of maps

Results From number counts							
Frequency [MHz]	T_E [K]	T_{NC} [K]	zero-level [K]	$T_{\rm coldspot}$ [K]			
22	$(1.04 \pm 0.24) \times 10^4$	6.92×10^{3}	5000	1.80×10^4			
45	$(2.95 \pm 0.34) \times 10^3$	1.0×10^{3}	544	3.84×10^3			
408	11.8 ± 1.1	2.61	3	12.14			
820	2.21 ± 0.39	0.39	0.6	2.91			
1420	0.580 ± 0.025	0.09	0.2	0.589			
2326	0.073 ± 0.013	0.024	0.08	0.098			

Summary

Overall significance of the excess: 4.5σ

Galactic synchrotron emission from WIMPs at radio frequencies

Electron number density Source term $\left|q(\mathbf{x}, E) = \frac{1}{2}(\sigma v) \left(\frac{\rho(\mathbf{x})}{M_{\text{DM}}}\right)^2 \frac{dn}{dE}(E)\right|$ Electron/positron propagation - Diffusion - Energy losses dark matter halo dísk - Synchrotron emission $B(r,z) = B_0 \exp\left(-\frac{r-r_{\odot}}{R_m} - \frac{|z|}{L_m}\right)$ **Parameters GMF** Model Kg L_m [kpc] | R_m [kpc] δL_z δR_q Π diffusive halo R_q L_z III R_{g} $B_0 = 6 \ \mu G$ IV constant

 $\chi \chi \longrightarrow (\bar{l}l, \bar{q}q, ZZ, W^+W^-, GG, HH)^{\text{had}}_{\text{dec}} \longrightarrow \gamma, \nu, e^{\pm}, \bar{p}, \bar{D}$

Morphology of radio sky at 45 MHz

10 GeV DM Annihilation into muon with thermal cross section Exp decaying B(r,z) with $B_{TOT} = 6$ microG (GMF I)

NFW tuned to Via Lactea II No substructures included

Galactic radio signal

45 MHz

Data: $|I| < 3^{\circ}$ DM models: $I = 0^{\circ}$

DM could substantially contribute to the radio flux

MED, MAX: allow to search for DM outside the GC region (while form MIN is too concentrated)

Galactic radio signal: bounds

Galactic radio signal: bounds

Not strong dependence of bound on magnetic field because the most constraining patches are those at low latitude, where the various B(r,z) do not sizeably differ

Bounds from other techniqus

Charles et al (Fermí Collab) Phys Rep 636 (2016) 1

NF, Maccione, Vittino, JCAP 09 (2013) 031

Galactic radio signal: bounds

Lower frequencies better for lighter DM Constraining power also depends on sky-coverage and sensitivity of the survey

Isotropic radio emission systematically in excess of what inferred from number counts: about a factor of $3 \div 6$

Results appear stable against: Galactic halo modeling (mild dependence on the resulting T) Galactic magnetic fields Spatial distribution of cosmic rays sources Different resolution of maps

Radio bounds on dark matter from our own galaxy provide relevant bounds, comparable to what obtained from other indirect detection signals